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Abstract 

The addition of a second harmonic cavity to the main rf system can help 
to increase the intensity of the beam without increasing (or with reducing) 
instabilities. This advantage of the double rf system comes from its flexibility. 
The second harmonic of the double rf system has its own peak voltage, as well 
as phase shift relative to the first harmonic. These two parameters allow the 
change of the shape of the bucket and the bunch in many different ways. 

In this report it will be shown how to calculate the bucket and bunch 
parameters for an optimized double rf system and then this will be compared to 
the single rf system to see how much improvement for the bunching factor and 
for capture efficiency can be achieved by the double rf system relative to the 
single rf system. 
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1. INTRODUCTION (Why double rf system?) 

The purpose of this section is to show how the inhomogeneity of the 
current is connected to the cavity voltage. The single rf system has no tools to 
manipulate the voltage wave in order to reduce current inhomogeneities. In 
contrast, the double rf system possess degrees of freedom enough to change the 
shape of the voltage wave that reduces current inhomogeneities, and by doing so, 
increases stability and intensity of the beam. 

1.1 Instabilities and Particle Losses 

The main product of every accelerator is a particle beam (sometimes it is 
not a beam, but rather a radiation created by the beam as in BNL’s NSLS). The 
main qualities of that product are energy, luminosity, and intensity. 

The higher energy is important to penetrate into the higher branches of 
elementary particle hierarchy. Higher luminosity increases the probability of 
nuclear reactions per unit cross section of the collision. Higher intensity 
increases the probability of the same reaction per unit of time. To be specific, 
let us talk about intensity. 

If we try to increase intensity by injecting more and more particles in the 
accelerator, then sooner or later we will face particle losses. There are many 
stages in the acceleration cycle where particles are lost. They hit hardware and 
residual gas in the chamber, producing various damage and dangerous radiation. 
There are losses due to the poor longitudinal capture, due to various transverse 
resonances, due to transition energy crossing, due to the complexity of extraction, 
and so on. Many losses can occur due to a wide class of longitudinal instabili- 
ties. Most of them manifest themselves as instabilities of the flow of charged 
particles , which is the electrical current circulating around the machine. 

1.2 The Current 

In the longitudinal reference frame, the current is a function of the 
longitudinal coordinate 4: I = I(4). On the other hand, according to its 
definition, the current is a number of charged particles passing a point 4 per unit 
time: 

where q is the particle charge, w is the revolution frequency, N = N (6) is a 
number of particles corresponding to point 4, and dN = N(4 + d4) - N(4). 



A vast majority of longitudinal instabilities occurs due to current 
inhomogeneity dI/d+, when its relative value dI/d4/I exceeds some threshold. To 
evaluate the area of current stability and instability means to evaluate dI/d+. This 
inhomogeneity can either grow producing instability or it can decay providing a 
stable evolution of particle flow. 

1.3 The Hamiltonian, Potential and Voltage 

In classical mechanics, a Hamiltonian is a sum of kinetic energy of the 
moving particle and potential energy of interaction between the particle and a 
field. In accelerator mechanics, a Hamiltonian is a sum of potential energy and 
appropriate function of a particle’s energy. As we will see later in Section 2, the 
Hamiltonian can be written as 

H(4,W) = -m - - w2 - U(+) Y 

2 

where U(4) is a potential of the cavity’s electrical field, W is the particle’s 
normalized energy, and m is a coefficient combined from a set of accelerator 
parameters (m is not a mass). 

A potential U is a scalar field, whose gradient is a force, which is a 
voltage (more precisely: a difference between applied voltage and synchronous 
voltage) : 

The voltage V is a product of voltage amplitude Vu = Vu(t), sometimes called a 
peak-voltage, and a voltage wave v = v(4) = v(4,t): 

V(4) = VU(t) * v(4) - (4) 

For example, for a single rf system, the voltage wave is v(4) = Sin(+). 
Similarly to Eq. (4), a synchronous voltage V, is a product 

where 4, is a synchronous phase. 

In this section, the Hamiltonian will provide a connection between a 
current I(+) and a potential U(+). The connection will be established by use of 
phase density p.  
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1.4 Phase Density 

e 

0 

In a phase plane ($,VV), the number of particles corresponding to the point 
(4, VV) is a function N = N(4, w). A local or phase density is 

d2N 
d4dW P(4YW = - * 

Particles' motion and the evolution of their phase density depend on the state of 
the accelerator controlled by magnetic field B, cavity voltage V, and frequency, 
f. If all three B, V ,  fa re  changing with time slowly enough, we say there is 
adiabatic conditions in a phase space. 

The most important property of the local density p is that under adiabatic 
conditions, the local density is reduced to the function of one variable, which is 
the Hamiltonian H 

P(47W) = P(H) (7) 

1.5 Line Density 

Experimentally , we cannot directly observe the phase density distribution. 
What we can see is the so-called line density X or "mountain range", which is an 
integral of phase density, p ,  over all particles with the given phase angle 4: 

which is to within a constant factor is the same as a current (1): 

I($) = const * A(+) . (9) 

Under adiabatic conditions, we can combine (7), (8), and (9) to get 

I(+) = const - / p(H)dW . (10) 

- 3 -  



1.6 Connection Between the Current and the VoItage 

To evaluate the current inhomogeneity, we have to find 

dU 
' 4  d4 

As - 'I? = - - does not depend on W, one can rewrite Eq. (1 1) as 

where I;($) is some function of 4: 

F(4) = const * -dW s 2 I  
The idea of a second harmonic cavity 

as a cure for longitudinal instabilities was 
brought up precisely because of the last 
formula. Indeed, we will see later in Sec- 
tion 2 that the parameters for the double rf 
system can be chosen in such a way that 
within the bucket there will be a significant- 
ly wide area around the center where the 
Hamiltonian does not depend on the phase 
angle 4. For such an area, density p will 
also be a function of W only. Consequently 
the function I;(&) will degenerate to the 
simple constant. 

Leaving this function I; for a future 
study, right now we can say, that because of 
Equations (3), (8), and ( l l ) ,  an inhomoge- 
neity of the current (as well as of the line 
density) is proportional to the voltage 

(13) 

Figure 1. Particle's trajecto- 
ries for the single (a) and 
double (b) rf system. The 
shaded area is where the 
Hamiltonian's dependence on 
phase 4 is very weak. 

Thus, in order to reduce current inhomogeneity, we have to minimize the 
deviation of the voltage wave v(4) from its synchronous value v,. 
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1.7 Why Double RF System? 

Multiple rf systems with second, third, fourth, and higher harmonic 
cavities were subjects of experimental and theoretical studies for a number of 
years [l-71. This report differs from the given references in the exact statement 
of the problem as to how the multiple system should be optimized. Also for the 
first time,in this report we provide an exact solution for an optimal double rf 
system. 

If we deal with just the main (single) rf system, then we have 

V(4) - = V,(Sin4 - Sin4,) . (15) 

In this case, the only way to minimize V-V, is to reduce the voltage amplitude 
(peak) V,. However, V, is not a free parameter. It has a lower limit which 
insures the existence of the longitudinal bucket. It has lower and upper 
constraints during injection, capture, acceleration, transition, and extraction. 

Thus, the single rf system cannot actively influence particle distribution 
within the bunch. The single rf system is a passive vehicle driving particles 
toward the higher energy. Unfortunately, the driver is blind. That is why we 
need a second driver, who will watch many turns, lines and signs along the road. 
This driver is an additional rf system, particularly the second harmonic cavity. 

When we have a double rf system, then two new joysticks, two new 
parameters Y and 6 are at our disposal 

V(4) = V0[Sin4 + Y - Sin2(4-6)] . (16) 

With the given V,, the second amplitude r (actually it is rV,) and the phase shift 
6 are two free parameters. By changing Y and 6, we can change V(4) throughout 
the whole region $l I 4  I 4r occupied by bunch, where r$L and 4r are left and right 
phase boundaries of the bunch. Now we can discuss the minimization of dUd4 
using r,6 without touching V,. 

1.8 Two Approaches to the Problem of Minimization 

There are many ways to minimize V(4) - V,. All these ways depend on 
the segment 4a I 4 5 where minimization is required and on the nature of a 
functional to be minimized. Obviously, underlying segment should be within a 
phase region of the bunch: 

(17) 
4f 5 5 4 5 4 b  5 4r ' 
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1.8.1 Integral Approach 

One of the natural looking functions is a mean deviation. The problem is 
to find such parameters &,r,6 that satisfy 

for the given &,&, in particular, for This approach can lead to 
the bucket which has two stable fixed points (see Figure 2). This in turn, can 
create inhomogeneity in line density X and in current 1. 

Figure 2. A bucket with two fixed points and corresponding line 
density with two peaks. 

1.8.2 Local Approach 

Another approach to the minimization of V($)-V, is coming from the local 
As properties of voltage wave V = V(4) at the synchronous phase 4 = &. 

V(4,) - V,  = 0, it would be nice to have a function 

(19) 
AV = AV(4) = V(4) - 5 

in a form of a power: 

AV(4) = const - (4 -+s)" , 

e 
which rectifies (flattens) a voltage V(4) around point +=4, as it is shown in 
Figure 3. The larger n is, the wider the interval, where V(4) is (almost) equal 
to the constant 6. In other words, the larger n is, the better the minimization is. 

- 6 -  



Figure 3. Minimization with the power function. 

To find a representation like (20), we first Taylor expand the function (19) 
around 4=4,, V,=V(+,): 

and then we seek the conditions to zero the first n-1 Taylor terms: 

If we satisfy such conditions, then the voltage wave is a power type function: 

(23) 
V(4) - y = OK4 -4y1 * 

The larger is n, the wider is the interval where the left-hand side of (23) is as 
minimal as possible. 

As we have only three free parameters Y, 6, we have to restrict 
ourselves to three equations in the system (22). If we would have in addition to 
the second harmonic cavity, a third harmonic cavity as well, then there would be 
five parameters 4,, r,, 6,, r,, a3 with indices 2,3 referring to the second and third 
harmonic. Having this, we would be able to raise the order m in (22) to have 5 
equations for 5 parameters and to flatten V(+) even more. But first, we have to 
explore how far we can go with the second harmonic. 
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2. SYNCHROTRON EQUATIONS AND BASIC PARAMETERS 

2.1 Hamiltonian Equations 

In the longitudinal phase plane (4,W), the synchrotron motion of charged 
particles is governed by Hamiltonian equations 

which can be derived from (or reduced to) the Hamiltonian 

where 

W = (E-EJw, m = o?hq/&Es , 
2 hw, = 2nf , 

y = EIEr , 
q = P ?  - P s  3 

0 2  = 1 -1ly2 , 
q = QelA , E,. = Ir . 

(3) 

Here E, 4 are the particle’s energy (per nucleon) and phase. The subscripts r, 
s, and t refer to the rest, synchronous, and transition energy. Please note the use 
of notations with qs > 0, m > 0 below transition energy (because the Hamilto- 
nian or at least its kinetic part is a sign-definitive function; to show it explicitly, 
I choose the listed notations). 

For a synchronous particle, the revolution frequency w, is locked to the 
main rf frequency f via the harmonic number h. The other notations are as 
follows. A is the atomic mass number, I, is the ionic rest energy per nucleon, Q 
is the ion’s charge state (number of stripped electrons from the atom), e is the 
proton charge, V is a voltage function, U is a potential field: 

- dU = V(4,t) - vs . 
d& 

(4) 
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2.2 Double Voltage 

0 Along with the main rf system, we will consider a second harmonic 
system, such that the effective voltage can be described as 

V(4) = V(4,t) = Vo(t) - v(4,t) = vov , (5a) 

(5b) v(4) = v(4,t) = Sin4 + rSin2(4 - 6 )  , 

where V, 2 0 is the main (first) amplitude, Y = r(t) is a second amplitude (as a 
fraction of V,), 6 = S(t) is a phase shift of the second harmonic with respect to 
the first harmonic. 

We call V voltage, v voltage wave. Voltage is a periodic function whose 
mean value is zero: 

f/J c2a 

V(4 + 2 r )  = V(4) Y 
(6) 

2.3 Synchronous Particle and Acceleration Rate 

A synchronous particle (4,,E,) provides a reference frame for all others 
(asynchronous) particles (4,E) or (4,W). In fact, a refrence frame is provided not 
by the physical synchronous particle, but rather by the parameters of the machine 
to which a corresponding synchronous particle would match its phase 4, and 
energy E,. [8] 

Let us find a function E, = ES(&), as well as a connection between a 
First, we write a synchronous particle (q5s,E,) and machine parameters. 

longitudinal dynamic equation for the synchronous particle 

where the synchronous voltage V, is 

y = V(4,J) = Vo(tY v(4,) 

Thus, Equation (7) shows how the rate of change ks is connected with 
synchronous phase &. Now we will connect the same with the magnetic 
field and other parameters. 
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e 
If a particle stays on the machine's central orbit of radius R,  then the 

particle momenta p ,  satisfies the Lorentz equation 

P, = qPB > (9) 

where q is charge, p = const. is a curvature radius of the main dipole magnet, 
whose field is B = B(t). 

The rate of change of momenta is p ,  = 4pB, while the rate of change 

of the energy is (v = wR is the particle's linear velocity) 

By equating (7) and (lo), we get 

= 27rRpB , 

or 

V ,  = v($,) = 27rRpBlVo = VJV, , 

and for the double system (first harmonic plus the second harmonic) 

v, = Sin$, + r - Sin2($, - 6 )  . (13) 

We call v, a (normalized) rate of acceleration. 

The evolution of synchronous energy E, = E,(t) characterizes an energy 

of the evolving bunch as a whole: if v, > 0, then BS>O and the bunch is 

accelerating, and vice versa. 

In longitudinal phase space ($,W), we prescribe to every particle its 
energy W = (E - EJw, measured relative to the synchronous energy E, and 
normalized by w,. For this reason, the force acting upon the particle is voltage 
V - V,  measured relative to its synchronous value V,. There is a slight ambiguity 
when we use a word Voltage" meaning sometimes V and other times V - V,. 
I hope the reader recognizes from the context "who is who". 
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2.4 Double Potential 

Similar to the cavity voltage, the potential can be split into two factors-- 
amplitude and wave: 

W4Y 4,) = V,b, - u(4)l Y (14) 

u(4) = cos4 + LCos2(fp-S) + Cpv,, us = u(4,) . (15) 
2 

We call u = u(4) a potential wave. Potential as well as Hamiltonian is 
determined only to within an additive constant which has no effect on the equation 
of motion. By denoting a potential as U(4,&), we show explicitly that the 
additive constant is determined by the phase angle 4,. Choosing that constant 
equal to Vous, we make a potential equal to zero when 4 = 4s: 

u(4sY4s) = 0 * (16) 

It follows from (4), (5 ) ,  and (14) that the relationship between the potential wave 
and the voltage wave can be established without involving an amplitude V,: 

= v(4) - v, . du 
d4 
- 

2.5 Synchronous Phase, Second Amplitude and Phase Shift 

To find three unknowns, cps, r,  6 ,  we have to use three equations (n = 3) 
of the system (1.22). Using prime ' = d/d+, we write: 

or 

fl(+,,r,S) = Sin4, + rSin2(4, - S) - vs = 0 , (19) f,(4,, r, 6) =  COS^, + 2rCos2(4, - 6) = 0 , 
&(4,,rY6) = Sin$, + 4rSin2($, - 6 )  = 0 . 

Before we start to solve this system, we will check its self-consistency by 
evaluating the Jacobian of the three functionsf,, fi, f3 of the three variables 4s, 
r, 6 .  If the Jacobian is non-zero, thenf,, fi, f 3  are functionally independent, and 
Equation (19) has at least one set of roots. 
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. .  

Cos@, +2rCos2(@, - 6) Sin2(@, - 6) -2rCos2(@, - 6) 
= -Sin@, - 4rSin2(@, - 6) 2Cos2(@, - 6) 4rSin2(as - 6) 

Cos@, + 8rCos2(@, - 6) 4Sin2(@, - 6) -8rC0~2(@, - 6) 

J = det - = [ :j 
(20) 

= 

Thus, as soon as rCos$, # 0, the system (19) determines at least one set of 
roots. The roots can be found as follows. From the first and second equations 
of (19), one gets: 

4 Sin$, = - v, = s , 
3 

Then, after dividing the third equation by the second, one gets 

2tan2($, - 6) = tan$, (23) 

or 

(24) 1 tan$, 6 = 4, --arctan- . 
2 2 

Finally, by raising to the second power and adding the second and third, we have 

The root of the system (1) is a single set of three numbers &, r(&), 6($s). Let 
$p = n- - 4s. If [$s,r$s), 6($,)] is a root of (1) then [$p, Y&,), 6($,)] is not a root, 
although $p does satisfy (21). This is in contrast with a single rf system where 
$ and c,bU = P - $s both satisfy Sin$ = v,. 

System (19) is invariant under each of the following transformations 

$ * $ + 2 n -  , (26) 
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If 

O I 4 , I -  K 

2 

then according to Eq. (24) the phase shift should satisfy 

O I 6 I 4 , .  

Then from the last equation of system (19), it follows that 

r 5 0 .  

Thus, the solution of system (19) is 

T 
c $ ~  = arcsins 0 I 4, I -, 2 

1 tg 4s 6 = +,--arctg- , 2 2 
T 0 1 6 1 -  
4 ’  

Figure 4 shows the functions 6 = 6(4,) and r = r(4,) . 

cp5 

0 

Figure 4. Second voltage r and phase shift 6 as a function of the synchronous 
angle 4s. 
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2.6 Voltage Constraints 

In an accelerating regime v, > 0, it follows from Eq. (21) that 

O < V , I - .  3 
4 

(33) 

Applying this to Eq. (12), we find 

(34) 4 4 
3 3 

V,(t) 2 - - y = - - 27rRpB(t) . 

This is the first voltage constraint. If at any time the amplitude V, falls lower 
than the right-hand side of Eq. (34), then the bucket will cease to exist. 

From (32) and (33), it follows that 

1 1 
4 2 
- I IYI I- . 

This is the second voltage constraint. 
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3. FMED POINTS 

3.1 Hamiltonian Surface 

The Hamiltonian function H = H(4, w, being a function of two variables, 
is a surface (Figure 5)  in three-dimensional space (4,  W, H): 

Any plane H = const., perpendicular to the H-axis, intersects the 
Hamiltonian surface along the curve whose projection into the phase plane (4, W) 
is the particle’s trajectory. Trajectories can be divided into two classes--closed 
and open. The separatrix is a self-crossing curve which divides these two classes. 
The area inside of the closed part of the separatrix, the bucket, covers all the 
closed trajectories. 

There can only be open trajectories outside of the bucket. The Hamilto- 
nian surface possesses stationary points--local minimae and maximae--whose 
projection into the phase plane are fixed points. 

Figure 5. Hamiltonian surface. 
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All the stationary points satisfy the system of equations 

From the second equation, it is obvious that all fixed points are lying along the 
+-axis: 

w = o ,  (3) 

and from the first equation (2), it is obvious that the position of all fixed points 
are determined by the potential 

= o ,  dU 
d+ 
- 

which due to (2.14) can be written in terms of potential wave 

du - = o .  
d+ 

(4) 

(5 )  

3.2 Classification of Fixed Points 

All the fixed points are classified according to the topological structure of 
the particles’ trajectories in the vicinity of the fixed points in question. There are 
stable and unstable fixed points. In the vicinity of the stable fixed points, any 
trajectory is closed. In the vicinity of the unstable fixed point, any trajectory is 
open. 

To examine a trajectory in the vicinity of any fixed point (+,,,O), we select 
that trajectory by it phase amplitude A+. The phase amplitude determines a 

point + = +o + A+ , where the trajectory crosses the +-axis. The phase 

amplitude also determines a value of the Hamiltonian pertaining to the trajectory: 

Let + = +o + x 

trajectory under consideration and let 

and W be the coordinates of a particle moving along the 

1x1 2 lA+l  < 1 .  (7) 
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We substitute in the left-hand side of the Hamiltonian (1) its constant value from 
(6), while on the right-hand side of (1) we put the trajectory coordinates 

where x,Ware variables, +,, +,,A+ are constants. Thus Eq. (8) is the trajectory 

equation in variables x, W. Due to (2.14) we can rewrite (8) as 

* w2 + u(+, f x) . (9) 
nm u(+, + A+) = -- 
qvo 

After a Taylor expansion of u in both sides of (9), it becomes 

nm - - w2 + (10) 
N o  

- - ulA+ + u ~ A + ~ / ~ !  + u ~ A + ~ / ~ !  + u , A + ~ / ~ !  + ... - 

u p  + ug2/2!  + ufi3/3! + u4x4/4! +... 

where ui = diu(+,) /d& , i = 1 , 2,. . . . As x and A+ are both infinitely small, it 

is enough to retain only non-zero terms of the lowest order in both series of (10). 
According to (3.5), every fixed point +o satisfies 

u , = o .  (1 1) 

Higher order derivatives of the potential wave u depend on the type of rf 
system. For the single rf system, we have (+o = +s is a fixed point): 

(1 1) 
4 4 )  = cos+ + +vs Y 

u, = du(+,)/d+ = -Sin+, + v, = 0 , 

u2 = d2u(rp,)/d+2 = -Cos+, = -\r;-.." < 0 . 

In this case (10) can be written as 

nm u2A5b2/2! = - - - w2 + ug2 /2 !  . 
qvo 
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Because u2 < 0 has the same sign as a "kinetic" term, Equation (12) is just an 
ellipse equation 

x 2 / A 2  + W2/B2  = 1 . (13) 

This is a closed curve around a fixed point (&,O), which qualifies it as a stable 
fixed point. 

For a single rf system, there is another fixed point rpU = T - 4, , which 

satisfies the conditions 

u1 = du(4,)/db, = -Sin4, + v, = 0 , (14) 
U, = d2u(+u)/d42 = + COS$, = + / T > O .  1 - V ,  

In this case, u2 > 0 has a sign opposite to the sign of the "kinetic" term, which 
makes (12) a hyperbolic equation 

x2IA2 - W / B 2  = 1 . (15) 

This is an open trajectory in the nearest vicinity of the fixed point (&,,O), and for 
that reason, the fixed point is called unstable. 

For a double rf system, the potential wave is 

and according to (2.32), there is a fixed point &, which along with r and S satisfy 
(2.18). Our problem now is to examine whether that fixed point (&,O) is stable 
or not. Due to (2.17), we can rewrite (2.18) as 

u1 = u2 = ug = 0 (17) 

and from (16) we can find 

u4 = Cos+, + 8rCus2(4, - S )  , (18) 

which can be simplified with the help of the second equation of (2.19) and (2.21): 

u4 = -3cus+, = - 3 4 9  < o  . (19) 
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To analyze a particle's trajectory (9) in the vicinity of the fixed point $o = &, 
we apply (17) and (19) to the series in (10) and we get 

mn ~ , A $ ~ 1 4 !  = - - - w f u4x4/4! . 
qvo 

Because u4 < 0 has the same sign as a "kinetic" term, Equation (20) is like the 
ellipse equation (Figure 6) .  

x 4 1 ~ 2  f W I B ~  = 1 . (21) 

This is a closed curve around a fixed point (+,,O), which qualifies it as a stable 
fixed point. 

x 

Figure 6 .  Closed curve (21) around fixed point. 

As it was mentioned in Section 2.5, the point n-& is not a fixed pint for a double 
rf system. We will proceed now to find an unstable fixed point for a double rf 
system. 

3.3 Unstable Fixed Point 

The unstable fixed point $,, possesses two properties. First of all it 
satisfies du/d$ = 0 or v($,) = v, or 

Sin$, + rSin2(+, - 6 )  - v, = 0 , (22) 
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where r = 4(&) and 6 = 6(&) satisfy 

Sin+, + rSin2(+, 6 )  - v, + 0 , (23) 

Cos+, + 2rCos2(+, - 6 )  = 0 , (24) 

Sin+, + 4rSin2(+, - 6 )  = 0 . (25) 

Secondly, any trajectory should be open in the vicinity of an unstable fixed point. 

Now we will find the unstable fixed point +u using all the properties of the 
stable fixed point &. Let us introduce the notations: 

+u = 4, + x , 
s = Sin+, , 

y = Sinx , 
S = Sin2(+, - 6 )  , (26) 

c = cos+, , c = COS2(+, - 6)  . 

It follows from (23)-(25) that 

3 
4 

vs = -s 7 

16r2 = 4 - 3s2 . 

With use of Eq. (26), we can rewrite the equation for +u as 

(s - c y ) d r n  = -;y2 - cy + s . (30) 

Here 1 - y 2  represents Cos+ and can be positive or negative. As we are going F 
to square (30), it does not mater what sign belongs to 4- . After squaring 

both sides of (30) and simplifying, we get: 

- + c y  2 2 =  s c y 3 ,  [: I 
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from where we come to (y = 0 gives trivial solution +u = 4J 

4.8r2SC = ~ S C  = ~ i n 4 ( 4 ~  - 6) , (32) 4sc - - 
16r2 Y =  

s2 +4c2 

or 

Sinx = Sin4(4, - 6) . 

This equation gives two values for 4": 

4u = 4s + 4(4s - 6) 

(33) 

(34) 

Let us show that the first one, (34), is not a root of (22). We will need formulae 
following from (28) 

S,=Sin4(~$~-6)=sc/4r~ , C,=Cos4(4,-6)=1 - s2 /8r2  . (36) 

After the substitution of (34) into (22), we get 

SC, + cs4 + rSin10(4s - 6) = SC, + cs4 + r[S(c," - s,") + ~CS,C,] = 

- - - s ( s ~  + 4)(13s2 - 12) 
4(4 - 3s2)2 

Y 

which is not the expression on the right-hand side of (22). 

On the other hand, if (35) is substituted into (22), then one gets 

-sC4 + cS4 - rSin6(4, - 6) = -C,(s + rs) + S,(c - rC) = 

(37) 

which is exactly equal to the right-hand side of Eq. (22). 
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Finally, we have to prove that a fixed point (35) is unstable. We take 

4 = 4u + x 7 4u = 7r + 4s - 4(4, - 6) (39) 

and having 

u(4) = cos+ + r CosZ(4 - 6) + 4 V S  
2 

we find 

=  COS^, - 2rCosZ(+, - 6) = 
d2u(4,> 

u2 = 
db2 

= cC4 + sS4 + 2rCos6(4, - 6) = cC4 + sS4 + 2r(CC, - SS,) = 

(42) 3 3s 2c 
2 8r2 

= C,(C + 2rC) + S,(s - 21-9 = -sS4 = - > 0 . 

After substituting (39)-(42) into (lo), the later becomes 

(43) 7rrn 

qvo 
~ , A 4 ~ / 2 !  = -- * W2 + ~ $ ~ / 2 !  . 

In this case u2 > 0 has a sign opposite to the sign of the "kinetic" term, which 
makes (43) a hyperbolic equation 

X2/A2 - W2/B2 = 1 . (44) 

This is an open trajectory in the nearest vicinity of the fixed point (&,O), and for 
that reason, the fixed point is unstable. 
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4. COMPARISON OF SINGLE AND DOUBLE RF' SYSTEMS 

4.1 Choosing the Basis for Comparison 

In order to compare single and double rf systeins, we have to choose the 
basis for comparison. First, we note that the synchronous voltage from (2.8) and 
(2.11) is 

= Vo - ~ ( 4 , )  = 27iRpB 

which determines the rate of acceleration. This voltage should be the same for 
both systems. This means that both systems are referring to the same moment 
of the accelerating cycle. At the same time, peak voltages can be different for 

the single V,, = Vol The fact of 

equality of the two synchronous voltages can be expressed by 

and for the double V,, = Vo2 rf system. 

(1) VOlVSl = v02vs2 = vs 

Second, we note that there are many other parameters that can be 
equalized for the single and double system. For instance, two important 
parameters of bucket and bunch are its height (or half-height) and area. Height 
and area both depend on the peak voltage. Both of them have advantages and 
disadvantages if used under the limitations imposed by various accelerator 
conditions such as available aperture, maximal magnetic field or field rate, 
stability thresholds, and so on. 

Because the physical aperture of the vacuum chamber is the most severe 
limitation on the buncWbucket parameters, and because bunch (and bucket) height 
is directly restricted by the aperture and because the mathematics of height is 

much easier than that of area, we choose the bucket height hb as a common basis 

for comparison of the single and double rf systems: 

hbl = hb2 

As we will see later in section 4.3, our two conditions (1) and (2) uniquely 
determine interdependence of two peak voltages--&, for the single system and Vo2 
for the double system. This means that if, lets say, V,, is given then in order to 
make (1) and (2) valid, the second voltage Vo2 should be a certain function of the 
first one: 
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We will now proceed from the several definitions of bucket parameters to 
derive Equation (3), after which we will be equipped for the logically founded 
comparison of the two systems. 

4.2 The Bucket and Its Height 

As we have seen in a phase plane (+,W) all the fixed points align along 
the +-axis, whose equation is W = 0. Every stable trajectory crosses the +-axis 
at least once. Any point, $, of the +-axis corresponds to a certain trajectory. 
There could be more than one point, $2,... belonging to one trajectory. 
However, it is enough to peak up one point $ in order to select a single 
trajectory, because every single point $ determines the value of the Hamiltonian 
(3.1) for the particle crossing that point + = $, W = 0:  

which in turn determines the trajectory equation on the phase plane (+,W): 

-U(+) Y 
4 W2 --U($) = -m- - 4 
2n 2 2n 

or due to (2.14) 

We call parameter 
amplitude. We call parameter 

a phase amplitude of the particle's trajectory or just 

a synchronous half-height because it depends on the synchronous energy E,. If 
4, is a stable fixed point, then we call parameter 

h, = / z i F ? K  (7) 

a normalized half-height of the particle's trajectory of amplitude $ or simply the 
normalized half-height. Finally, we call 

(8) W(+Y$) = k d % F m -  
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a normalized particle’s trajectory (of amplitude $), so (2) becomes 

W(4,$) = hSW(4Y$) = fh, - dGF7F - (9) 

If the trajectory crosses the unstable fixed point ($ = 4JY then (6) becomes an 
equation of separatrix 

S(cb) = W(4,cbJ = +h, - /E y u, = U(4J . (10) 

We call a normalized separatrix the curve 

A closed part of the (normalized) separatrix encompasses the phase plane area 
called the (normalized) bucket. The half-height of the normalized bucket is 

h , = / w  . (12) 

The unnormalized bucket half-height is 

h, = hs * h, . 

For the single rf system 

For the double rf system 

us - u, = Coscb, 12  + &] - [n-4(cbs4)]vs . 

(13) 

(14) 

4.3 Voltage Connection for the Two Systems and 
Data for the Power Supply 

We will now derive the equation connecting the synchronous phases of the 
single and double rf systems each of which creates a bucket with the same height. 
In all of the following formulae, the index 1 refers to the single system and the 
index 2 is for the double system, so our goal is to find a function connecting the 

two phases 402 = F ( c $ ~ ~ )  . 
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Because both systems have the same synchronous voltage (accelerating 
rate) V,, we can write 

VOlVSl = V02Vs2 ’ (16) 

where the wave voltages at the synchronous angle according to (2.21) are 

Because both systems create buckets of the same height, we have from (6), 
(1 3)-(1 5 )  

V01(us1 - U,I)  = Vo2(us2 - u,2> (18) 

or due to (2.13, (15) 

or with the use of (1) and (2.32) 

This equation of the type F(4sl ,4,,) = 0 implicitly connects synchronous phases 

for the two systems of equal bucket height. 

With the use of any numerical method, the implicit equation can be solved 

After that the voltage and the function 402 = F(401) can be constructed. 

connection Vo2 = P(Vol) can be recovered also numerically (or with a monstrous- 

type formulae analytically). Figure 7 shows a graph of the function rpo2 = F(&J 

With the use of this function, we have constructed a function vs2 = P(vsl) 

shown in Figure 8. As peak voltage for each system can be expressed as 

V .  01 = - VS , i=1,2 , (20) 
‘si 
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a function Voz = P( vel) can be recovered from a function P. Instead, we have 

constructed a function a = a(v,,) : 

which does not require a use of accelerating rate V,. A lm%c)n a is shown in 

Figure 9 and Table I. The meaning of this function is that if you know the peak 
voltage V,, for the single rf system, then you have for the double system a 

relative deviation a of peak voltage 

voz = (1 - 4Vo ,  > (22) 

which would provide a bucket with the same height as for the single system. 

As a is always non positive (a I 0) , then 

voz VOI - 

0 

Figure 7 

/ 

3 0 
3 1;z 

Figure 8 
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Figure 9 Table I 

The peak voltage is an important parameter not only for particle dynamics, 
but also for designing rf cavities and for the cost evaluation of the whole 
accelerating cycle. One aspect of the accelerator’s total power consumption is the 

amount of rf applied voltage Vu . The applied voltage is the same as the peak 

voltage for the single rf system Val = Vo1 . For the double rf system, the 

applied voltage is the sum of the peak voltages applied for the first and for the 
second harmonic cavities, while the total voltage acting upon the particle is a 
combination (2.5a), (2.5b): 

Vo,[Sin4 + rSin2(4 - S)] , (24) 

where Vo2 is the peak voltage for the first harmonic, while Ir I Vo2 is the peak 

voltage for the second harmonic. Thus, the applied voltage is 

Vuc/az = (1 + lrl>V,, - (25) 

After the substitution of (22) into (25), we have 

Vuc/az = (1 + Irl)(l - V U l  - 

This result can be used as data for the evaluation of power supplies for the double 
rf system. 
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4.4 Bucket Length and Area 

Bucket length and area are important parameters when we are trying to 
evaluate injection and capture efficiency. The bucket length is a distance in phase 
plane (+, W) between two points where the separatrix intersects the +-axis (Figure 
10). One point is an unstable fixed point + = C$u , another one is the so-called 

separatrix extreme point + = +e , which is a root of the equation 

Figure 10. 

For the single rf system 

u(+) = Cos+ + +v, , +u = T - 4, , v, = Sin+, . (28) 

For the double rf system (2.15) 

3 (29) u(+) = COS+ + L  COS^(+ - 6) + +v,, +u = T + 4, 4 4 ,  - s), v, = - Sin+, , 
2 4 

where Y and 6 are defined according to (2.24) and (2.25). The bucket length can 
now be expressed as 

e = + , - + ,  - (30) 
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The bucket area is the phase plane area within the closed part of the 
separatrix: 

where h, is the bucket's synchronous half-height (6) while a, is the bucket's 
normalized area. 

Equation (27) can be solved and integral (3 1) can be evaluated numerically 
for any set of input parameters. After that we can compare lengths and areas of 
buckets with equal heights for the single and double rf systems at any accelerating 
rate. 

and f for the single and double 

Figure 12 shows the relative 

Figure 11 shows graphs of 4,,4, 
systems as a function of the synchronous phase 
deviations 

6Q = ' - " - 100% , 6A = - * 100% (32) 
Ql 4 

.-  
in bucket length and area for the double system with respect to the single system. 

237 

c 

Figure 11. 

Oh5 

Figure 12. 
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4.5 Synchrotron Frequency 

Let us consider an arbitrary particle within the bucket that possesses only 
one stable fixed point. All trajectories within the bucket are closed. Due to 
closeness,particle motion will be periodic with time. The frequency correspond- 
ing to this motion is called synchrotron frequency. 

Let be a particle’s intersection as it is defined in Section 4.2. this 
means that the particle’s trajectory intersects the +-axis at the point + = $ 
(Figure 13). Because the trajectory is closed, it will intersect the +-axis at a 
second point too. To distinguish the two intersections, we denote the right one 
as phr and the left one as $,. 

Figure 13. Particle’s trajectory with two intersections. 

According to (4.9), the particle’s trajectory can be expressed as 

If one of the two intersections $,,$r is known, then another one can be 
found from 

u, u($,) = u($$ = u, . (34) 
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’ 

Suppose we know $r,$l for some particle. By taking Equation (2.1) 

dt 
_I ‘6 = - m W ,  

and rewriting it as 

(35) 

we can express the period T of synchrotron oscillations for the particle in 
question. It follows from (35) that when W > 0, then the particle moves from 
right to left, and vice versa (because rn > 0). For this reason, we integrate (36) 
from the right intersection to the left one, and for the full period we double the 
integral: 

*e 

T = 21  d4 (37) *, -rnW(4dr) 

or by reversing the path of integration, we get 

where rn is defined in (2.3), and the synchronous bucket half-height h, is defined 
according to (6). After the period T is found, a synchrotron frequency F can be 
written: 

1 
T 

F = - .  (39) 

Formula (38) is equally applicable to the single and double rf systems. 
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4.5.1 Synchrotron Frequency of Small Amplitude 

The distances between trajectory intersections and the stable fixed point 

A$r = $r - 4 s  9 A$l = 4 s  - $e (40) 

are called right and left amplitudes. They are equal if the bucket is stationary: 
4s = 0. They are approximately equal when 

$ / $ p .  1 (41) 

Then the right and left amplitudes are 

A$,, = A$, = A 4  

and we call them just small amplitude. 

The case of small amplitude synchrotron frequency can be expressed by 
a simple analytical formula. We will derive it now for the single and double rf 
systems. 

Single FW System 

For this case, the potential wave is 

u(4) = cos4 + 4vs , 

where vs = Sir@, . Let us introduce a new variable by putting 

After Taylor expansion of the potential wave u($), we have 

U(4# + x) = us + ulx + u92/2! + ... , 

(43) 

(44) 

(45) 

where us = u(c$,), ui = d iu(4s)/d4i, i = 1,2, . . . . 
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According to (3.5) the fixed point $s satisfies u1 = 0, which leaves us 

u($) = u(4, + x) = us + u$/2 , (46) 

where u2 = -Cos$, . When x = A$ = 4, - 4, , then 

U, = u($, + A$) = U, - A $ 2 C ~ ~ $ , / 2  . (47) 

As (45) can be split into two sign-alternating series and 

u3 = -Sin$,, u4 = Cos$,, then 

Au = I u($) - (us + ulx + u.$/2!) I 5 A$3 Sin$,/6 +A$4Cos$J24 . (48) 

Thus, after replacement u($) by its Taylor expansion up to the second order, the 
absolute error Au will be less than E if the inequality satisfies 

A~$~Sin$,/6 + A$4Cos$,/24 I E , (49) 

or 

6~ 
1 Sin $, + - Cos$, 
4 

This is the criteria of smallness of the phase amplitude A$. 

After substituting (46) and (47) into (38), the period T will be written as 

(51) dx A4 
4 

T=* -6 /0.5A$2Cos$, -O.5x2Cos$, 

and taking m from (2. 1), and h, from (6), we have the synchrotron frequency 
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where 

is the particle’s revolution frequency and 

is the synchrotron tune. 

Double RF System 

For this case, the potential wave is 

r 3 
2 4 

u(6) = Cos4 + - Cos2(4 - 6) + 4vs v, = -Si@, . (55) 

and its Taylor expansion is (ui =d iu($,) /d@) : 

u(4) =u($, +x) =us +UIX +u32/2! + U $ 3 / 3 !  +u4x4/4! + . . . . (56) 

Due to (3.17) and (3.18), u1 = u2 = u3 = 0 and u4 = -3cos4, which gives 

~ ( 4 )  = U, - x4C0s4,/8 (57) 

and 

u(+$ = ~ ( 4 ,  + A4) = U, - A44C~~4 , /8  . (58) 

The series (56) can be split into two sign-alternating series 

and us = -3Sin4, u6 = -15Cos~$, then 

3 15 A u =  Iu(~)-(u,+u4x4/4!)I IA45Sin4,-- + A46Cos4,-- I 
5! 61 (59) 

3 
5! 

I 2A~$~Sin4,-- . 
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Thus, after replacement of u(4) by its Taylor expansion up to the fourth 
order, the absolute error Au will be less than E if the inequality satisfies 

A~f1~Sin~$,,/20 + A~6Cos4,/48 I E , (60) 

or 

This is the criteria of smallness of the phase amplitude A$. 

Let A 4  be a small-bunch half-length. By taking from (50) and (61) only 
the equalities, we can cozider a function 

A4 = A4(d (62) 

for a single rf as well as for a double rf when both are adjusted for buckets of 
equal height. Figure 14 shows a comparison of two half-lengths A4 for small 
bunches at various value of error E .  

.Pil2 I-r , I 

0 Pi/4 i.O Pi  /2 

Figure 14. Comparison of two bunch lengths. 
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After substituting (57) and (58) into (38), period Twill be written as 

where F - , - - K - - 1.854 is the complete elliptical integral of the (1 f ) -  [ f ) -  
first kind. Now we get for the synchrotron frequency 

O s  

271: 
where f, = - is the particle's revolution frequency and 

is the synchrotron tune. 

The important difference between the single and double rf systems is that 
the latter has synchrotron frequency and tune vanishing at the center of the bunch 
(A4 = 0). 

4.5.2 Synchrotron Frequency of Finite Amplitude 

When amplitudes A$r, A$f are finite, not small, then the synchrotron 

period, frequency, and tune are evaluated numerically from the integral 
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4.6 Bunching Factor 

As we have seen in Section 1, instabilities in particle flow can occur when 
inhomogeneity 

dIldcpJI(4) = dWd6,lX(6,) (67) 

in the current I or in the line density X will become relatively high. This can 

happen at any point 4 within the bunch 6,t 5 6, I 6,r . Experimentally it 

would be extremely inconvenient or impossible to examhe criteria (67) at every 
point 4 with acceptable accuracy. That is why instead of local criteria (67), a 
concept of the bunching factor as a global criteria was developed allowing the 
characterization of a whole bunch with respect to its inhomogeneity. 

The bunching factor B is defined as the ratio of the average to 

peak A,, line density X = A(+), 6,1 I 6, I 6,r : 

- 
B = hIX,, , 

where 6,1 and 6,r are the left and right boundary of the bunch, and 

A,, = max A($) . 
6, 

For example, inFigure 15, if 4,. - 6,1 = 2A6,(-6,, = A6, = 6,t) and 

4) A@) = 1 - , 
A4) 

then the bunching factor will change with n as it is shown in Table 11. 
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>I 
Table II 

-@ 0 
. <& 

Figure 15. Line density as a 
parabolic function of 
various order n. 

Following Hofmann and Pedersen [SI, we will choose the phase density 

p(H) = const - , / F H  . (72) 

Such a choice being general enough for proton applications, provides at the same 
time a convenient form for the line density X: 

X(4) = const l-w - u(431 9 (73) 

where 6" is an unstable fixed point, and u is the potential determined by (28) for 
the single rf system or by (29) for the double system. 

The left point of bunch 4l = +e is the extreme point determined 

according to Equation (27). The right point 4r = +,, is an unstable fixed point. 

From (73) it is obvious that the maximal value of X will be reached at the stable 

fixed point &, where A(+) = ~ ( 4 )  = 0 . 
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Now the bunching factor B for the line density (73) can be written as 
follows 

4" 

Figure 16 shows B1 and B, the bunching factors for the single and double 
rf systems when the corresponding buckets have the same height. There is also 
a relative deviation 

As we can see, the double rf system provides a bunching factor larger than the 
single system by 23-28% throughout the whole region. 

Pip2 

- ,  

1.0 

Pip4 

0 

Figure 16. 
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4.7 Capture Efficiency 

Injection from the linac to the circular machine with subsequent capture 
is a pretty oomplicated process. The capture efficiency depends on many factors 
of different natures. Some of them are 

Capture program ~($1, ~($1, r)(t) -- voltage, frequency, magnetic field; 

Linacprogram E($), AE, A t  -- injectionenergy, energy spread, duration; 

Available aperture; 

Bucket parameters. 

Chopper program ~ 4 ( t )  -- length and composition of chopped strips; 

We will use the last factor here for a rough estimation of the capture efficiency 
or more precisely for comparison of the capture efficiency between the single and 
double rf systems with the same bucket height. Let us consider injection and 
capture for two extreme cases: 

(a) 
(b) 

Injected beam has a very small energy spread AE, 
Injected beam has a very large energy spread AE. 

The real case will always be somewhere between (a) and (b). Obviously, in the 
first case, the capture efficiency will be proportional to the bucket length, while 
in the second case, the capture efficiency will be proportional to the bucket area. 
Thus, from Figure 17 we can see a strip between the two curves, one of which 
is the relative deviation in bucket length. then, the relative deviation in the 
capture efficiency for the double system compared to the single system will be 
within the strip. 

Figure 17. 
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